Two Distinct Channels Mediated by m2mAChR and α9nAChR Co-Exist in Type II Vestibular Hair Cells of Guinea Pig
نویسندگان
چکیده
Acetylcholine (ACh) is the principal vestibular efferent neurotransmitter among mammalians. Pharmacologic studies prove that ACh activates a small conductance Ca2+-activated K+ channels (KCa) current (SK2), mediated by α9-containing nicotinic ACh receptor (α9nAChR) in mammalian type II vestibular hair cells (VHCs II). However, our studies demonstrate that the m2 muscarinic ACh receptor (m2mAChR) mediates a big conductance KCa current (BK) in VHCs II. To better elucidate the correlation between these two distinct channels in VHCs II of guinea pig, this study was designed to verify whether these two channels and their corresponding AChR subtypes co-exist in the same VHCs II by whole-cell patch clamp recordings. We found that m2mAChR sensitive BK currents were activated in VHCs II isolated by collagenase IA, while α9nAChR sensitive SK2 currents were activated in VHCs II isolated by trypsin. Interestingly, after exposing the patched cells isolated by trypsin to collagenase IA for 3 min, the α9nAChR sensitive SK2 current was abolished, while m2mAChR-sensitive BK current was activated. Therefore, our findings provide evidence that the two distinct channels and their corresponding AChR subtypes may co-exist in the same VHCs II, and the alternative presence of these two ACh receptors-sensitive currents depended on isolating preparation with different enzymes.
منابع مشابه
Gentamicin Blocks the ACh-Induced BK Current in Guinea Pig Type II Vestibular Hair Cells by Competing with Ca2+ at the l-Type Calcium Channel
Type II vestibular hair cells (VHCs II) contain big-conductance Ca²⁺-dependent K⁺ channels (BK) and L-type calcium channels. Our previous studies in guinea pig VHCs II indicated that acetylcholine (ACh) evoked the BK current by triggering the influx of Ca²⁺ ions through L-type Ca²⁺ channels, which was mediated by M2 muscarinic ACh receptor (mAChRs). Aminoglycoside antibiotics, such as gentamici...
متن کاملENDOGENOUS RELEASE OF OPIATES BY REPETITIVE ELECTRICAL FIELD STIMULATION IN THE GUINEA-PIG AND RAT ILEAL LONGITUDINAL MUSCLE
The effect of repetitive electrical field stimulation and the response of the guinea-pig and rat ileal longitudinal muscle to single pulse stimulations was examined. Single pulse field stimulation produced twitch contraction which was inhibited by repetitive field stimulation (10 Hz, 40V, 0.5 msec for 5 m). This inhibition was largely, though never completely, reversed by naloxone. Contrac...
متن کاملConfirming a Role for α9nAChRs and SK Potassium Channels in Type II Hair Cells of the Turtle Posterior Crista
In turtle posterior cristae, cholinergic vestibular efferent neurons (VENs) synapse on type II hair cells, bouton afferents innervating type II hair cells, and afferent calyces innervating type I hair cells. Electrical stimulation of VENs releases acetylcholine (ACh) at these synapses to exert diverse effects on afferent background discharge including rapid inhibition of bouton afferents and ex...
متن کاملElectrically evoked motile responses of mammalian type I vestibular hair cells.
Vestibular hair cells, type I and II, with membrane potentials around -64 mV were prepared from guinea pig ampullar cristae and maculae. In type I cells, current injection, application of voltage steps during membrane patch-clamping, or extracellular alternating current (ac) fields evoked fast length changes of 50 nm to 500 nm of the cell "neck." Mechanical responses were determined by computer...
متن کاملComparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae.
Calyx afferents, a group of morphologically and physiologically distinct afferent fibers innervating the striolar region of vestibular sensory epithelia, are selectively labeled by antibodies to the calcium-binding protein calretinin. In this study, the population of calretinin-stained calyx afferents was used to delineate and quantify the striolar region in six rodent species: mouse, rat, gerb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2013